
Optimize AWS Costs with Terraform:
What You Need to Know

$

$
$

$

Section 1: Why It Matters

Cloud Cost Challenges on AWS:

Overprovisioned EC2
and RDS instances

Forgotten resources
(EBS, S3, Lambda)

No pre-deployment
visibility into spend

Manual clean-up
and no drift detection

Section 2: Terraform-Based Solutions

Codify Cost-Saving Defaults
Use t3.micro, GLACIER,
and tagging policies in code.

Automate Cleanups
 Apply lifecycle rules to
delete/transition resources.

Conditional Deployments
Avoid waste in non-prod
with count + env  variables.

Pre-Deploy Cost Estimates
Use Infracost in CI pipelines
to avoid surprises.

Budget Alerts as Code
Set up aws_budgets_budget
in Terraform for spend limits.

Spot & Auto Scaling
Mix On-Demand + Spot in
autoscaling_group configs.

Section 3: Top Tools for Terraform Workflows

Tool Purpose
Infracost Cost diff in Terraform plans

Want real-time IaC cost control?  Try ControlMonkey’s Terraform Automation Platform

Section 4: Pro Tips

ControlMonkey Guardrails, drift detection, optimization

AWS Budgets Budget enforcement as code

AWS Cost Explorer Trend visualization

Compute Optimizer EC2/ASG right-sizing advice

Always run
terraform plan

before apply

Use -var and .tfvars
to simulate

environments

Build reusable
cost-aware

modules

Automate drift
detection + tagging
with ControlMonkey

https://controlmonkey.io/

